Files
loader/src/main.zig
2025-10-20 10:46:22 +02:00

328 lines
13 KiB
Zig

const std = @import("std");
const elf = std.elf;
const mem = std.mem;
const posix = std.posix;
const testing = std.testing;
const assert = std.debug.assert;
const log = std.log.scoped(.loader);
pub const std_options = std.Options{ .log_level = .info };
const page_size = std.heap.pageSize();
const max_interp_path_length = 128;
const help =
\\Usage:
\\ ./loader [loader_flags] <executable> [args...]
\\Flags:
\\ -h print this help
\\
;
const UnfinishedReadError = error{UnfinishedRead};
pub fn main() !void {
// Parse arguments
var arg_index: u64 = 1; // Skip own name
while (arg_index < std.os.argv.len) : (arg_index += 1) {
const arg = mem.sliceTo(std.os.argv[arg_index], '0');
if (arg[0] != '-') break;
if (mem.eql(u8, arg, "-h") or mem.eql(u8, arg, "--help")) {
std.debug.print("{s}", .{help});
return;
}
// TODO: Handle loader flags when/if we need them
} else {
std.debug.print("No executable given.\n", .{});
std.debug.print("{s}", .{help});
return;
}
// Map file into memory
const file = try lookupFile(mem.sliceTo(std.os.argv[arg_index], 0));
var buffer: [128]u8 = undefined;
var file_reader = file.reader(&buffer);
log.info("--- Loading executable: {s} ---", .{std.os.argv[arg_index]});
const ehdr = try elf.Header.read(&file_reader.interface);
const base = try loadStaticElf(ehdr, &file_reader);
const entry = ehdr.entry + if (ehdr.type == .DYN) base else 0;
log.info("Executable loaded: base=0x{x}, entry=0x{x}", .{ base, entry });
// Check for dynamic linker
const maybe_interp: ?std.fs.File = interp: {
var phdrs = ehdr.iterateProgramHeaders(&file_reader);
while (try phdrs.next()) |phdr| {
if (phdr.p_type != elf.PT_INTERP) continue;
var interp_path: [max_interp_path_length]u8 = undefined;
try file_reader.seekTo(phdr.p_offset);
if (try file_reader.read(interp_path[0..phdr.p_filesz]) != phdr.p_filesz)
return UnfinishedReadError.UnfinishedRead;
assert(interp_path[phdr.p_filesz - 1] == 0); // Must be zero terminated
log.info("Found interpreter path: {s}", .{interp_path[0 .. phdr.p_filesz - 1]});
break :interp try std.fs.cwd().openFile(
interp_path[0 .. phdr.p_filesz - 1],
.{ .mode = .read_only },
);
}
break :interp null;
};
// We don't need the file anymore. But we reuse the buffer if we need to load the interpreter.
// Therefore deinit everything to make sure we don't use it anymore.
file_reader = undefined;
file.close();
var maybe_interp_base: ?usize = null;
var maybe_interp_entry: ?usize = null;
if (maybe_interp) |interp| {
// TODO: If we have an interpreter we could/should unload the elf file because it will be
// loaded by the dynamic linker anyway.
log.info("--- Loading interpreter ---", .{});
var interp_reader = interp.reader(&buffer);
const interp_ehdr = try elf.Header.read(&interp_reader.interface);
assert(interp_ehdr.type == elf.ET.DYN);
const interp_base = try loadStaticElf(interp_ehdr, &interp_reader);
maybe_interp_base = interp_base;
maybe_interp_entry = interp_ehdr.entry + if (interp_ehdr.type == .DYN) interp_base else 0;
log.info("Interpreter loaded: base=0x{x}, entry=0x{x}", .{ interp_base, maybe_interp_entry.? });
interp.close();
}
var i: usize = 0;
const auxv = std.os.linux.elf_aux_maybe.?;
while (auxv[i].a_type != elf.AT_NULL) : (i += 1) {
// TODO: look at other auxv types and check if we need to change them.
auxv[i].a_un.a_val = switch (auxv[i].a_type) {
elf.AT_PHDR => base + ehdr.phoff,
elf.AT_PHENT => ehdr.phentsize,
elf.AT_PHNUM => ehdr.phnum,
elf.AT_BASE => maybe_interp_base orelse auxv[i].a_un.a_val,
elf.AT_ENTRY => entry,
elf.AT_EXECFN => @intFromPtr(std.os.argv[arg_index]),
else => auxv[i].a_un.a_val,
};
}
// The stack layout provided by the kernel is:
// argc, argv..., NULL, envp..., NULL, auxv...
// We need to shift this block of memory to remove the loader's own arguments before we jump to
// the new executable.
// The end of the block is one entry past the AT_NULL entry in auxv.
const end_of_auxv = &auxv[i + 1];
const dest_ptr = @as([*]u8, @ptrCast(std.os.argv.ptr));
const src_ptr = @as([*]u8, @ptrCast(&std.os.argv[arg_index]));
const len = @intFromPtr(end_of_auxv) - @intFromPtr(src_ptr);
log.debug(
"Copying stack from {*} to {*} with length 0x{x}",
.{ src_ptr, dest_ptr, len },
);
assert(@intFromPtr(dest_ptr) < @intFromPtr(src_ptr));
std.mem.copyForwards(u8, dest_ptr[0..len], src_ptr[0..len]);
// `std.os.argv.ptr` points to the argv pointers. The word just before it is argc and also the
// start of the stack.
const argc: [*]usize = @as([*]usize, @ptrCast(@alignCast(&std.os.argv.ptr[0]))) - 1;
argc[0] = std.os.argv.len - arg_index;
log.debug("new argc: {x}", .{argc[0]});
const final_entry = maybe_interp_entry orelse entry;
log.info("Trampolining to final entry: 0x{x} with sp: {*}", .{ final_entry, argc });
trampoline(final_entry, argc);
}
/// Loads all `PT_LOAD` segments of an ELF file into memory.
///
/// For `ET_EXEC` (non-PIE), segments are mapped at their fixed virtual addresses (`p_vaddr`).
/// For `ET_DYN` (PIE), segments are mapped at a random base address chosen by the kernel.
///
/// It handles zero-initialized(e.g., .bss) sections by mapping anonymous memory and only reading
/// `p_filesz` bytes from the file, ensuring `p_memsz` bytes are allocated.
fn loadStaticElf(ehdr: elf.Header, file_reader: *std.fs.File.Reader) !usize {
// NOTE: In theory we could also just look at the first and last loadable segment because the
// ELF spec mandates these to be in ascending order of `p_vaddr`, but better be safe than sorry.
// https://gabi.xinuos.com/elf/08-pheader.html#:~:text=ascending%20order
const minva, const maxva = bounds: {
var minva: u64 = std.math.maxInt(u64);
var maxva: u64 = 0;
var phdrs = ehdr.iterateProgramHeaders(file_reader);
while (try phdrs.next()) |phdr| {
if (phdr.p_type != elf.PT_LOAD) continue;
minva = @min(minva, phdr.p_vaddr);
maxva = @max(maxva, phdr.p_vaddr + phdr.p_memsz);
}
minva = mem.alignBackward(usize, minva, page_size);
maxva = mem.alignForward(usize, maxva, page_size);
log.debug("Calculated bounds: minva=0x{x}, maxva=0x{x}", .{ minva, maxva });
break :bounds .{ minva, maxva };
};
// Check, that the needed memory region can be allocated as a whole. We do this
const dynamic = ehdr.type == elf.ET.DYN;
log.debug("ELF type is {s}", .{if (dynamic) "DYN" else "EXEC (static)"});
const hint = if (dynamic) null else @as(?[*]align(page_size) u8, @ptrFromInt(minva));
log.debug("mmap pre-flight hint: {*}", .{hint});
const base = try posix.mmap(
hint,
maxva - minva,
posix.PROT.NONE,
.{ .TYPE = .PRIVATE, .ANONYMOUS = true, .FIXED = !dynamic },
-1,
0,
);
log.debug("Pre-flight reservation successful at: {*}, size: 0x{x}", .{ base.ptr, base.len });
posix.munmap(base);
const flags = posix.MAP{ .TYPE = .PRIVATE, .ANONYMOUS = true, .FIXED = true };
var phdrs = ehdr.iterateProgramHeaders(file_reader);
var phdr_idx: u32 = 0;
errdefer posix.munmap(base);
while (try phdrs.next()) |phdr| : (phdr_idx += 1) {
if (phdr.p_type != elf.PT_LOAD) continue;
if (phdr.p_memsz == 0) continue;
const offset = phdr.p_vaddr & (page_size - 1);
const size = mem.alignForward(usize, phdr.p_memsz + offset, page_size);
var start = mem.alignBackward(usize, phdr.p_vaddr, page_size);
const base_for_dyn = if (dynamic) @intFromPtr(base.ptr) else 0;
start += base_for_dyn;
log.debug(
" - phdr[{}]: mapping 0x{x} bytes at 0x{x} (vaddr=0x{x}, dyn_base=0x{x})",
.{ phdr_idx, size, start, phdr.p_vaddr, base_for_dyn },
);
// NOTE: We can't use a single file-backed mmap for the segment, because p_memsz may be
// larger than p_filesz. This difference accounts for the .bss section, which must be
// zero-initialized.
const ptr = try posix.mmap(
@as(?[*]align(page_size) u8, @ptrFromInt(start)),
size,
posix.PROT.WRITE,
flags,
-1,
0,
);
try file_reader.seekTo(phdr.p_offset);
if (try file_reader.read(ptr[offset..][0..phdr.p_filesz]) != phdr.p_filesz)
return UnfinishedReadError.UnfinishedRead;
try posix.mprotect(ptr, elfToMmapProt(phdr.p_flags));
}
log.debug("loadElf returning base: 0x{x}", .{@intFromPtr(base.ptr)});
return @intFromPtr(base.ptr);
}
/// Converts ELF program header protection flags to mmap protection flags.
fn elfToMmapProt(elf_prot: u64) u32 {
var result: u32 = posix.PROT.NONE;
if ((elf_prot & elf.PF_R) != 0) result |= posix.PROT.READ;
if ((elf_prot & elf.PF_W) != 0) result |= posix.PROT.WRITE;
if ((elf_prot & elf.PF_X) != 0) result |= posix.PROT.EXEC;
return result;
}
/// Opens the file by either opening via a (absolute or relative) path or searching through `PATH`
/// for a file with the name.
fn lookupFile(path_or_name: []const u8) !std.fs.File {
// If filename contains a slash ("/"), then it is interpreted as a pathname.
if (std.mem.indexOfScalarPos(u8, path_or_name, 0, '/')) |_| {
const fd = try posix.open(path_or_name, .{ .ACCMODE = .RDONLY, .CLOEXEC = true }, 0);
return .{ .handle = fd };
}
// If it has no slash we need to look it up in PATH.
if (posix.getenvZ("PATH")) |env_path| {
var paths = std.mem.tokenizeScalar(u8, env_path, ':');
while (paths.next()) |p| {
var dir = std.fs.openDirAbsolute(p, .{}) catch continue;
defer dir.close();
const fd = posix.openat(dir.fd, path_or_name, .{
.ACCMODE = .RDONLY,
.CLOEXEC = true,
}, 0) catch continue;
return .{ .handle = fd };
}
}
return error.FileNotFound;
}
/// This function performs the final jump into the loaded program (amd64)
// TODO: support more architectures
fn trampoline(entry: usize, sp: [*]usize) noreturn {
asm volatile (
\\ mov %[sp], %%rsp
\\ jmp *%[entry]
: // No outputs
: [entry] "r" (entry),
[sp] "r" (sp),
: .{ .rsp = true, .memory = true });
unreachable;
}
// TODO: make this be passed in from the build system
const bin_path = "zig-out/bin/";
fn getTestExePath(comptime name: []const u8) []const u8 {
return bin_path ++ "test_" ++ name;
}
const loader_path = bin_path ++ "loader";
test "nolibc_nopie_exit" {
try testHelper(&.{ loader_path, getTestExePath("nolibc_nopie_exit") }, "");
}
test "nolibc_pie_exit" {
try testHelper(&.{ loader_path, getTestExePath("nolibc_pie_exit") }, "");
}
test "libc_pie_exit" {
try testHelper(&.{ loader_path, getTestExePath("libc_pie_exit") }, "");
}
test "nolibc_nopie_helloWorld" {
try testHelper(&.{ loader_path, getTestExePath("nolibc_nopie_helloWorld") }, "Hello World!\n");
}
test "nolibc_pie_helloWorld" {
try testHelper(&.{ loader_path, getTestExePath("nolibc_pie_helloWorld") }, "Hello World!\n");
}
test "libc_pie_helloWorld" {
try testHelper(&.{ loader_path, getTestExePath("libc_pie_helloWorld") }, "Hello World!\n");
}
test "nolibc_nopie_printArgs" {
try testPrintArgs("nolibc_nopie_printArgs");
}
test "nolibc_pie_printArgs" {
try testPrintArgs("nolibc_pie_printArgs");
}
test "libc_pie_printArgs" {
try testPrintArgs("libc_pie_printArgs");
}
test "echo" {
try testHelper(&.{ "echo", "Hello", "There" }, "Hello There\n");
}
fn testPrintArgs(comptime name: []const u8) !void {
const exe_path = getTestExePath(name);
const loader_argv: []const []const u8 = &.{ loader_path, exe_path, "foo", "bar", "baz hi" };
const target_argv = loader_argv[1..];
const expected_stout = try mem.join(testing.allocator, " ", target_argv);
defer testing.allocator.free(expected_stout);
try testHelper(loader_argv, expected_stout);
}
fn testHelper(
argv: []const []const u8,
expected_stdout: []const u8,
) !void {
const result = try std.process.Child.run(.{
.allocator = testing.allocator,
.argv = argv,
});
defer testing.allocator.free(result.stdout);
defer testing.allocator.free(result.stderr);
errdefer std.log.err("term: {}", .{result.term});
errdefer std.log.err("stdout: {s}", .{result.stdout});
try testing.expectEqualStrings(expected_stdout, result.stdout);
try testing.expect(result.term == .Exited);
try testing.expectEqual(0, result.term.Exited);
}