396 lines
15 KiB
Zig
396 lines
15 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
|
|
const elf = std.elf;
|
|
const mem = std.mem;
|
|
const posix = std.posix;
|
|
const testing = std.testing;
|
|
|
|
const log = std.log.scoped(.flicker);
|
|
const Patcher = @import("Patcher.zig");
|
|
|
|
const assert = std.debug.assert;
|
|
|
|
pub const std_options: std.Options = .{
|
|
.log_level = .info,
|
|
.log_scope_levels = &.{
|
|
.{ .scope = .disassembler, .level = .info },
|
|
.{ .scope = .patcher, .level = .debug },
|
|
.{ .scope = .patch_location_iterator, .level = .warn },
|
|
.{ .scope = .flicker, .level = .info },
|
|
},
|
|
};
|
|
const page_size = std.heap.pageSize();
|
|
const max_interp_path_length = 128;
|
|
const help =
|
|
\\Usage:
|
|
\\ ./flicker [loader_flags] <executable> [args...]
|
|
\\Flags:
|
|
\\ -h print this help
|
|
\\
|
|
;
|
|
|
|
const UnfinishedReadError = error{UnfinishedRead};
|
|
|
|
pub fn main() !void {
|
|
// Parse arguments
|
|
var arg_index: u64 = 1; // Skip own name
|
|
while (arg_index < std.os.argv.len) : (arg_index += 1) {
|
|
const arg = mem.sliceTo(std.os.argv[arg_index], '0');
|
|
if (arg[0] != '-') break;
|
|
if (mem.eql(u8, arg, "-h") or mem.eql(u8, arg, "--help")) {
|
|
std.debug.print("{s}", .{help});
|
|
return;
|
|
}
|
|
// TODO: Handle loader flags when/if we need them
|
|
} else {
|
|
std.debug.print("No executable given.\n", .{});
|
|
std.debug.print("{s}", .{help});
|
|
return;
|
|
}
|
|
|
|
const file = try lookupFile(mem.sliceTo(std.os.argv[arg_index], 0));
|
|
|
|
{
|
|
// Initialize patcher
|
|
try Patcher.init();
|
|
// Resolve the absolute path of the target executable. This is needed for the
|
|
// readlink("/proc/self/exe") interception. We use the file descriptor to get the
|
|
// authoritative path.
|
|
var self_buf: [128]u8 = undefined;
|
|
const fd_path = try std.fmt.bufPrint(&self_buf, "/proc/self/fd/{d}", .{file.handle});
|
|
Patcher.target_exec_path = try std.fs.readLinkAbsolute(fd_path, &Patcher.target_exec_path_buf);
|
|
log.debug("Resolved target executable path: {s}", .{Patcher.target_exec_path});
|
|
}
|
|
|
|
// Map file into memory
|
|
var file_buffer: [128]u8 = undefined;
|
|
var file_reader = file.reader(&file_buffer);
|
|
log.info("--- Loading executable: {s} ---", .{std.os.argv[arg_index]});
|
|
const ehdr = try elf.Header.read(&file_reader.interface);
|
|
const base = try loadStaticElf(ehdr, &file_reader);
|
|
const entry = ehdr.entry + if (ehdr.type == .DYN) base else 0;
|
|
log.info("Executable loaded: base=0x{x}, entry=0x{x}", .{ base, entry });
|
|
|
|
// Check for dynamic linker
|
|
var maybe_interp_base: ?usize = null;
|
|
var maybe_interp_entry: ?usize = null;
|
|
var phdrs = ehdr.iterateProgramHeaders(&file_reader);
|
|
while (try phdrs.next()) |phdr| {
|
|
if (phdr.p_type != elf.PT_INTERP) continue;
|
|
|
|
var interp_path: [max_interp_path_length]u8 = undefined;
|
|
try file_reader.seekTo(phdr.p_offset);
|
|
if (try file_reader.read(interp_path[0..phdr.p_filesz]) != phdr.p_filesz)
|
|
return UnfinishedReadError.UnfinishedRead;
|
|
assert(interp_path[phdr.p_filesz - 1] == 0); // Must be zero terminated
|
|
log.info("Found interpreter path: {s}", .{interp_path[0 .. phdr.p_filesz - 1]});
|
|
const interp = try std.fs.cwd().openFile(
|
|
interp_path[0 .. phdr.p_filesz - 1],
|
|
.{ .mode = .read_only },
|
|
);
|
|
|
|
log.info("--- Loading interpreter ---", .{});
|
|
var interp_buffer: [128]u8 = undefined;
|
|
var interp_reader = interp.reader(&interp_buffer);
|
|
const interp_ehdr = try elf.Header.read(&interp_reader.interface);
|
|
assert(interp_ehdr.type == elf.ET.DYN);
|
|
const interp_base = try loadStaticElf(interp_ehdr, &interp_reader);
|
|
maybe_interp_base = interp_base;
|
|
maybe_interp_entry = interp_ehdr.entry + if (interp_ehdr.type == .DYN) interp_base else 0;
|
|
log.info(
|
|
"Interpreter loaded: base=0x{x}, entry=0x{x}",
|
|
.{ interp_base, maybe_interp_entry.? },
|
|
);
|
|
interp.close();
|
|
}
|
|
|
|
var i: usize = 0;
|
|
const auxv = std.os.linux.elf_aux_maybe.?;
|
|
while (auxv[i].a_type != elf.AT_NULL) : (i += 1) {
|
|
// TODO: look at other auxv types and check if we need to change them.
|
|
auxv[i].a_un.a_val = switch (auxv[i].a_type) {
|
|
elf.AT_PHDR => base + ehdr.phoff,
|
|
elf.AT_PHENT => ehdr.phentsize,
|
|
elf.AT_PHNUM => ehdr.phnum,
|
|
elf.AT_BASE => maybe_interp_base orelse auxv[i].a_un.a_val,
|
|
elf.AT_ENTRY => entry,
|
|
elf.AT_EXECFN => @intFromPtr(std.os.argv[arg_index]),
|
|
else => auxv[i].a_un.a_val,
|
|
};
|
|
}
|
|
|
|
// The stack layout provided by the kernel is:
|
|
// argc, argv..., NULL, envp..., NULL, auxv...
|
|
// We need to shift this block of memory to remove the loader's own arguments before we jump to
|
|
// the new executable.
|
|
// The end of the block is one entry past the AT_NULL entry in auxv.
|
|
const end_of_auxv = &auxv[i + 1];
|
|
const dest_ptr = @as([*]u8, @ptrCast(std.os.argv.ptr));
|
|
const src_ptr = @as([*]u8, @ptrCast(&std.os.argv[arg_index]));
|
|
const len = @intFromPtr(end_of_auxv) - @intFromPtr(src_ptr);
|
|
log.debug(
|
|
"Copying stack from {*} to {*} with length 0x{x}",
|
|
.{ src_ptr, dest_ptr, len },
|
|
);
|
|
assert(@intFromPtr(dest_ptr) < @intFromPtr(src_ptr));
|
|
std.mem.copyForwards(u8, dest_ptr[0..len], src_ptr[0..len]);
|
|
|
|
// `std.os.argv.ptr` points to the argv pointers. The word just before it is argc and also the
|
|
// start of the stack.
|
|
const argc: [*]usize = @as([*]usize, @ptrCast(@alignCast(&std.os.argv.ptr[0]))) - 1;
|
|
argc[0] = std.os.argv.len - arg_index;
|
|
log.debug("new argc: {x}", .{argc[0]});
|
|
|
|
const final_entry = maybe_interp_entry orelse entry;
|
|
log.info("Trampolining to final entry: 0x{x} with sp: {*}", .{ final_entry, argc });
|
|
trampoline(final_entry, argc);
|
|
}
|
|
|
|
/// Loads all `PT_LOAD` segments of an ELF file into memory.
|
|
///
|
|
/// For `ET_EXEC` (non-PIE), segments are mapped at their fixed virtual addresses (`p_vaddr`).
|
|
/// For `ET_DYN` (PIE), segments are mapped at a random base address chosen by the kernel.
|
|
///
|
|
/// It handles zero-initialized(e.g., .bss) sections by mapping anonymous memory and only reading
|
|
/// `p_filesz` bytes from the file, ensuring `p_memsz` bytes are allocated.
|
|
fn loadStaticElf(ehdr: elf.Header, file_reader: *std.fs.File.Reader) !usize {
|
|
// NOTE: In theory we could also just look at the first and last loadable segment because the
|
|
// ELF spec mandates these to be in ascending order of `p_vaddr`, but better be safe than sorry.
|
|
// https://gabi.xinuos.com/elf/08-pheader.html#:~:text=ascending%20order
|
|
const minva, const maxva = bounds: {
|
|
var minva: u64 = std.math.maxInt(u64);
|
|
var maxva: u64 = 0;
|
|
var phdrs = ehdr.iterateProgramHeaders(file_reader);
|
|
while (try phdrs.next()) |phdr| {
|
|
if (phdr.p_type != elf.PT_LOAD) continue;
|
|
minva = @min(minva, phdr.p_vaddr);
|
|
maxva = @max(maxva, phdr.p_vaddr + phdr.p_memsz);
|
|
}
|
|
minva = mem.alignBackward(usize, minva, page_size);
|
|
maxva = mem.alignForward(usize, maxva, page_size);
|
|
log.debug("Calculated bounds: minva=0x{x}, maxva=0x{x}", .{ minva, maxva });
|
|
break :bounds .{ minva, maxva };
|
|
};
|
|
|
|
// Check, that the needed memory region can be allocated as a whole. We do this
|
|
const dynamic = ehdr.type == elf.ET.DYN;
|
|
log.debug("ELF type is {s}", .{if (dynamic) "DYN" else "EXEC (static)"});
|
|
const hint = if (dynamic) null else @as(?[*]align(page_size) u8, @ptrFromInt(minva));
|
|
log.debug("mmap pre-flight hint: {*}", .{hint});
|
|
const base = try posix.mmap(
|
|
hint,
|
|
maxva - minva,
|
|
posix.PROT.WRITE,
|
|
.{ .TYPE = .PRIVATE, .ANONYMOUS = true, .FIXED_NOREPLACE = !dynamic },
|
|
-1,
|
|
0,
|
|
);
|
|
log.debug("Pre-flight reservation at: {*}, size: 0x{x}", .{ base.ptr, base.len });
|
|
|
|
var phdrs = ehdr.iterateProgramHeaders(file_reader);
|
|
var phdr_idx: u32 = 0;
|
|
errdefer posix.munmap(base);
|
|
while (try phdrs.next()) |phdr| : (phdr_idx += 1) {
|
|
if (phdr.p_type != elf.PT_LOAD) continue;
|
|
if (phdr.p_memsz == 0) continue;
|
|
|
|
const offset = phdr.p_vaddr & (page_size - 1);
|
|
const size = mem.alignForward(usize, phdr.p_memsz + offset, page_size);
|
|
var start = mem.alignBackward(usize, phdr.p_vaddr, page_size);
|
|
const base_for_dyn = if (dynamic) @intFromPtr(base.ptr) else 0;
|
|
start += base_for_dyn;
|
|
log.debug(
|
|
" - phdr[{}]: mapping 0x{x} - 0x{x} (vaddr=0x{x}, dyn_base=0x{x})",
|
|
.{ phdr_idx, start, start + size, phdr.p_vaddr, base_for_dyn },
|
|
);
|
|
const ptr: []align(page_size) u8 = @as([*]align(page_size) u8, @ptrFromInt(start))[0..size];
|
|
try file_reader.seekTo(phdr.p_offset);
|
|
if (try file_reader.read(ptr[offset..][0..phdr.p_filesz]) != phdr.p_filesz)
|
|
return UnfinishedReadError.UnfinishedRead;
|
|
|
|
const protections = elfToMmapProt(phdr.p_flags);
|
|
if (protections & posix.PROT.EXEC > 0) {
|
|
log.info("Patching executable segment", .{});
|
|
try Patcher.patchRegion(ptr);
|
|
}
|
|
try posix.mprotect(ptr, protections);
|
|
}
|
|
log.debug("loadElf returning base: 0x{x}", .{@intFromPtr(base.ptr)});
|
|
return @intFromPtr(base.ptr);
|
|
}
|
|
|
|
/// Converts ELF program header protection flags to mmap protection flags.
|
|
fn elfToMmapProt(elf_prot: u64) u32 {
|
|
var result: u32 = posix.PROT.NONE;
|
|
if ((elf_prot & elf.PF_R) != 0) result |= posix.PROT.READ;
|
|
if ((elf_prot & elf.PF_W) != 0) result |= posix.PROT.WRITE;
|
|
if ((elf_prot & elf.PF_X) != 0) result |= posix.PROT.EXEC;
|
|
return result;
|
|
}
|
|
|
|
/// Opens the file by either opening via a (absolute or relative) path or searching through `PATH`
|
|
/// for a file with the name.
|
|
// TODO: support paths starting with ~
|
|
fn lookupFile(path_or_name: []const u8) !std.fs.File {
|
|
// If filename contains a slash ("/"), then it is interpreted as a pathname.
|
|
if (std.mem.indexOfScalarPos(u8, path_or_name, 0, '/')) |_| {
|
|
const fd = try posix.open(path_or_name, .{ .ACCMODE = .RDONLY, .CLOEXEC = true }, 0);
|
|
return .{ .handle = fd };
|
|
}
|
|
|
|
// If it has no slash we need to look it up in PATH.
|
|
if (posix.getenvZ("PATH")) |env_path| {
|
|
var paths = std.mem.tokenizeScalar(u8, env_path, ':');
|
|
while (paths.next()) |p| {
|
|
var dir = std.fs.openDirAbsolute(p, .{}) catch continue;
|
|
defer dir.close();
|
|
const fd = posix.openat(dir.fd, path_or_name, .{
|
|
.ACCMODE = .RDONLY,
|
|
.CLOEXEC = true,
|
|
}, 0) catch continue;
|
|
return .{ .handle = fd };
|
|
}
|
|
}
|
|
|
|
return error.FileNotFound;
|
|
}
|
|
|
|
/// This function performs the final jump into the loaded program (amd64)
|
|
// TODO: support more architectures
|
|
fn trampoline(entry: usize, sp: [*]usize) noreturn {
|
|
asm volatile (
|
|
\\ mov %[sp], %%rsp
|
|
\\ jmp *%[entry]
|
|
: // No outputs
|
|
: [entry] "r" (entry),
|
|
[sp] "r" (sp),
|
|
: .{ .rsp = true, .memory = true });
|
|
unreachable;
|
|
}
|
|
|
|
test {
|
|
_ = @import("AddressAllocator.zig");
|
|
_ = @import("Range.zig");
|
|
_ = @import("PatchLocationIterator.zig");
|
|
}
|
|
|
|
// TODO: make this be passed in from the build system
|
|
const bin_path = "zig-out/bin/";
|
|
fn getTestExePath(comptime name: []const u8) []const u8 {
|
|
return bin_path ++ "test_" ++ name;
|
|
}
|
|
const flicker_path = bin_path ++ "flicker";
|
|
|
|
test "nolibc_nopie_exit" {
|
|
try testHelper(&.{ flicker_path, getTestExePath("nolibc_nopie_exit") }, "");
|
|
}
|
|
test "nolibc_pie_exit" {
|
|
try testHelper(&.{ flicker_path, getTestExePath("nolibc_pie_exit") }, "");
|
|
}
|
|
// BUG: This one is flaky
|
|
// test "libc_pie_exit" {
|
|
// try testHelper(&.{ flicker_path, getTestExePath("libc_pie_exit") }, "");
|
|
// }
|
|
|
|
test "nolibc_nopie_helloWorld" {
|
|
try testHelper(&.{ flicker_path, getTestExePath("nolibc_nopie_helloWorld") }, "Hello World!\n");
|
|
}
|
|
test "nolibc_pie_helloWorld" {
|
|
try testHelper(&.{ flicker_path, getTestExePath("nolibc_pie_helloWorld") }, "Hello World!\n");
|
|
}
|
|
// BUG: This one is flaky
|
|
// test "libc_pie_helloWorld" {
|
|
// try testHelper(&.{ flicker_path, getTestExePath("libc_pie_helloWorld") }, "Hello World!\n");
|
|
// }
|
|
|
|
test "nolibc_nopie_printArgs" {
|
|
try testPrintArgs("nolibc_nopie_printArgs");
|
|
}
|
|
test "nolibc_pie_printArgs" {
|
|
try testPrintArgs("nolibc_pie_printArgs");
|
|
}
|
|
// BUG: This one is flaky
|
|
// test "libc_pie_printArgs" {
|
|
// try testPrintArgs("libc_pie_printArgs");
|
|
// }
|
|
|
|
test "nolibc_nopie_readlink" {
|
|
try testReadlink("nolibc_nopie_readlink");
|
|
}
|
|
test "nolibc_pie_readlink" {
|
|
try testReadlink("nolibc_pie_readlink");
|
|
}
|
|
// BUG: This one just outputs the path to the flicker executable and is likely also flaky
|
|
// test "libc_pie_readlink" {
|
|
// try testReadlink("libc_pie_readlink");
|
|
// }
|
|
|
|
test "nolibc_nopie_clone_raw" {
|
|
try testHelper(
|
|
&.{ flicker_path, getTestExePath("nolibc_nopie_clone_raw") },
|
|
"Child: Hello\nParent: Goodbye\n",
|
|
);
|
|
}
|
|
test "nolibc_pie_clone_raw" {
|
|
try testHelper(
|
|
&.{ flicker_path, getTestExePath("nolibc_pie_clone_raw") },
|
|
"Child: Hello\nParent: Goodbye\n",
|
|
);
|
|
}
|
|
|
|
test "nolibc_nopie_clone_no_new_stack" {
|
|
try testHelper(
|
|
&.{ flicker_path, getTestExePath("nolibc_nopie_clone_no_new_stack") },
|
|
"Child: Hello\nParent: Goodbye\n",
|
|
);
|
|
}
|
|
test "nolibc_pie_clone_no_new_stack" {
|
|
try testHelper(
|
|
&.{ flicker_path, getTestExePath("nolibc_pie_clone_no_new_stack") },
|
|
"Child: Hello\nParent: Goodbye\n",
|
|
);
|
|
}
|
|
|
|
test "echo" {
|
|
try testHelper(&.{ "echo", "Hello", "There" }, "Hello There\n");
|
|
}
|
|
|
|
fn testPrintArgs(comptime name: []const u8) !void {
|
|
const exe_path = getTestExePath(name);
|
|
const loader_argv: []const []const u8 = &.{ flicker_path, exe_path, "foo", "bar", "baz hi" };
|
|
const target_argv = loader_argv[1..];
|
|
const expected_stout = try mem.join(testing.allocator, " ", target_argv);
|
|
defer testing.allocator.free(expected_stout);
|
|
try testHelper(loader_argv, expected_stout);
|
|
}
|
|
|
|
fn testReadlink(comptime name: []const u8) !void {
|
|
const exe_path = getTestExePath(name);
|
|
const loader_argv: []const []const u8 = &.{ flicker_path, exe_path };
|
|
const cwd_path = try std.fs.cwd().realpathAlloc(testing.allocator, ".");
|
|
defer testing.allocator.free(cwd_path);
|
|
const expected_path = try std.fs.path.join(testing.allocator, &.{ cwd_path, exe_path });
|
|
defer testing.allocator.free(expected_path);
|
|
try testHelper(loader_argv, expected_path);
|
|
}
|
|
|
|
fn testHelper(
|
|
argv: []const []const u8,
|
|
expected_stdout: []const u8,
|
|
) !void {
|
|
const result = try std.process.Child.run(.{
|
|
.allocator = testing.allocator,
|
|
.argv = argv,
|
|
});
|
|
defer testing.allocator.free(result.stdout);
|
|
defer testing.allocator.free(result.stderr);
|
|
errdefer std.log.err("term: {}", .{result.term});
|
|
errdefer std.log.err("stdout: {s}", .{result.stdout});
|
|
errdefer std.log.err("stderr: {s}", .{result.stderr});
|
|
|
|
try testing.expectEqualStrings(expected_stdout, result.stdout);
|
|
try testing.expect(result.term == .Exited);
|
|
try testing.expectEqual(0, result.term.Exited);
|
|
}
|