Files
flicker/src/Patcher.zig
2025-11-21 22:01:27 +01:00

430 lines
17 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const testing = std.testing;
const math = std.math;
const mem = std.mem;
const posix = std.posix;
const zydis = @import("zydis").zydis;
const disassembler = @import("disassembler.zig");
const log = std.log.scoped(.patcher);
const AddressAllocator = @import("AddressAllocator.zig");
const InstructionFormatter = disassembler.InstructionFormatter;
const InstructionIterator = disassembler.InstructionIterator;
const PatchLocationIterator = @import("PatchLocationIterator.zig");
const PatchByte = PatchLocationIterator.PatchByte;
const Range = @import("Range.zig");
const assert = std.debug.assert;
const page_size = 4096;
const jump_rel32: u8 = 0xe9;
const jump_rel32_size = 5;
const jump_rel8: u8 = 0xeb;
const jump_rel8_size = 2;
const max_ins_bytes = 15;
// Based on the paper 'x86-64 Instruction Usage among C/C++ Applications' by 'Akshintala et al.'
// it's '4.25' bytes, so 4 is good enough. (https://oscarlab.github.io/papers/instrpop-systor19.pdf)
const avg_ins_bytes = 4;
// TODO: Find an invalid instruction to use.
// const invalid: u8 = 0xaa;
const int3: u8 = 0xcc;
const nop: u8 = 0x90;
// Prefixes for Padded Jumps (Tactic T1)
const prefix_fs: u8 = 0x64;
const prefix_gs: u8 = 0x65;
const prefix_ss: u8 = 0x36;
const prefixes = [_]u8{ prefix_fs, prefix_gs, prefix_ss };
const Patcher = @This();
gpa: mem.Allocator,
flicken: std.StringArrayHashMapUnmanaged(Flicken) = .empty,
address_allocator: AddressAllocator = .empty,
/// Tracks the base addresses of pages we have mmap'd for Flicken.
allocated_pages: std.AutoHashMapUnmanaged(u64, void) = .empty,
pub fn init(gpa: mem.Allocator) !Patcher {
var flicken: std.StringArrayHashMapUnmanaged(Flicken) = .empty;
try flicken.ensureTotalCapacity(gpa, 8);
flicken.putAssumeCapacity("nop", .{ .name = "nop", .bytes = &.{} });
return .{
.gpa = gpa,
.flicken = flicken,
};
}
pub fn deinit(patcher: *Patcher) void {
_ = patcher;
}
/// Flicken name and bytes have to be valid for the lifetime it's used. If a trampoline with the
/// name is already registered it gets overwritten.
/// NOTE: The name "nop" is reserved and always has the ID 0.
pub fn addFlicken(patcher: *Patcher, trampoline: Flicken) !FlickenId {
assert(!mem.eql(u8, "nop", trampoline.name));
try patcher.flicken.ensureUnusedCapacity(patcher.gpa, 1);
errdefer comptime unreachable;
const gop = patcher.flicken.getOrPutAssumeCapacity(trampoline.name);
if (gop.found_existing) {
log.warn("addTrampoline: Overwriting existing trampoline: {s}", .{trampoline.name});
}
gop.key_ptr.* = trampoline.name;
gop.value_ptr.* = trampoline;
return @enumFromInt(gop.index);
}
pub const Flicken = struct {
name: []const u8,
bytes: []const u8,
pub fn size(flicken: *const Flicken) u64 {
return flicken.bytes.len + jump_rel32_size;
}
};
pub const FlickenId = enum(u64) {
/// The nop flicken is special. It just does the patched instruction and immediately jumps back
/// to the normal instruction stream. It **cannot** be changed.
/// The bytes are always empty, meaning that `bytes.len == 0`.
/// It also needs special handling when constructing the patches, because it's different for
/// each instruction.
nop = 0,
_,
};
/// Must point to first byte of an instruction.
pub const PatchRequest = struct {
/// What to patch with.
flicken: FlickenId,
/// Offset within the region.
offset: u64,
/// Number of bytes of instruction.
size: u8,
/// A byte slice from the start of the offset to the end of the region. This isn't necessary to
/// have but makes this more accessible.
bytes: []u8,
pub fn desc(_: void, lhs: PatchRequest, rhs: PatchRequest) bool {
return @intFromPtr(lhs.bytes.ptr) > @intFromPtr(rhs.bytes.ptr);
}
pub fn format(
self: @This(),
writer: *std.Io.Writer,
) std.Io.Writer.Error!void {
try writer.print(
".{{ .address = 0x{x}, .bytes = 0x{x}, .flicken = {} }}",
.{ @intFromPtr(self.bytes.ptr), self.bytes, @intFromEnum(self.flicken) },
);
}
};
pub fn patchRegion(patcher: *Patcher, region: []align(page_size) u8) !void {
{
// Block the region, such that we don't try to allocate there anymore.
const start: i64 = @intCast(@intFromPtr(region.ptr));
try patcher.address_allocator.block(
patcher.gpa,
.{ .start = start, .end = start + @as(i64, @intCast(region.len)) },
page_size,
);
}
var arena_impl = std.heap.ArenaAllocator.init(patcher.gpa);
const arena = arena_impl.allocator();
defer arena_impl.deinit();
var patch_requests: std.ArrayListUnmanaged(PatchRequest) = .empty;
{
// Get where to patch.
var instruction_iterator = InstructionIterator.init(region);
while (instruction_iterator.next()) |instruction| {
// TODO: handle RIP relative instructions/operands somehow.
// Maybe use `ZydisCalcAbsoluteAddress`?
const should_patch: bool = instruction.instruction.mnemonic == zydis.ZYDIS_MNEMONIC_SYSCALL;
if (should_patch) {
const offset = instruction.address - @intFromPtr(region.ptr);
const request: PatchRequest = .{
.flicken = .nop,
.offset = offset,
.size = instruction.instruction.length,
.bytes = region[offset..],
};
try patch_requests.append(arena, request);
}
}
log.info("patchRegion: Got {} patch requests", .{patch_requests.items.len});
}
// Sort patch requests in descending order by address, such that we patch from back to front.
mem.sortUnstable(PatchRequest, patch_requests.items, {}, PatchRequest.desc);
{
// Check for duplicate patch requests and undefined IDs
var last_offset: ?u64 = null;
for (patch_requests.items, 0..) |request, i| {
if (last_offset != null and last_offset.? == request.offset) {
var buffer: [256]u8 = undefined;
const fmt = disassembler.formatBytes(request.bytes, &buffer);
log.err(
"patchRegion: Found duplicate patch requests for instruction: {s}",
.{fmt},
);
log.err("patchRegion: request 1: {f}", .{patch_requests.items[i - 1]});
log.err("patchRegion: request 2: {f}", .{patch_requests.items[i]});
return error.DuplicatePatchRequest;
}
last_offset = request.offset;
if (@as(u64, @intFromEnum(request.flicken)) >= patcher.flicken.count()) {
var buffer: [256]u8 = undefined;
const fmt = disassembler.formatBytes(
request.bytes[0..request.size],
&buffer,
);
log.err(
"patchRegion: Usage of undefined flicken in request {f} for instruction: {s}",
.{ request, fmt },
);
return error.undefinedFlicken;
}
}
}
{
// Apply patches.
try posix.mprotect(region, posix.PROT.READ | posix.PROT.WRITE);
defer posix.mprotect(region, posix.PROT.READ | posix.PROT.EXEC) catch
@panic("patchRegion: mprotect back to R|X failed. Can't continue");
// PERF: A set of the pages for the patches/flicken we made writable. This way we don't
// repeatedly change call `mprotect` on the same page to switch it from R|W to R|X and back.
// At the end we `mprotect` all pages in this set back to being R|X.
var pages_made_writable: std.AutoHashMapUnmanaged(u64, void) = .empty;
for (patch_requests.items) |request| {
const flicken: Flicken = if (request.flicken == .nop)
.{ .name = "nop", .bytes = request.bytes[0..request.size] }
else
patcher.flicken.entries.get(@intFromEnum(request.flicken)).value;
var pii = PatchInstructionIterator.init(
request.bytes,
request.size,
flicken.size(),
);
pii: while (try pii.next(patcher.gpa, &patcher.address_allocator)) |allocated_range| {
// Ensure `allocated_range` is mapped R|W.
const start, const end = pageRange(allocated_range);
const protection = posix.PROT.READ | posix.PROT.WRITE;
var page_addr = start;
while (page_addr < end) : (page_addr += page_size) {
// If the page is already writable, skip it.
if (pages_made_writable.get(page_addr)) |_| continue;
// If we mapped it already we have to do mprotect, else mmap.
const gop = try patcher.allocated_pages.getOrPut(patcher.gpa, page_addr);
if (gop.found_existing) {
const ptr: [*]align(page_size) u8 = @ptrFromInt(page_addr);
try posix.mprotect(ptr[0..page_addr], protection);
} else {
const addr = posix.mmap(
@ptrFromInt(page_addr),
page_size,
protection,
.{ .TYPE = .PRIVATE, .ANONYMOUS = true, .FIXED_NOREPLACE = true },
-1,
0,
) catch |err| switch (err) {
error.MappingAlreadyExists => {
// If the mapping exists this means that the someone else
// (executable, OS, dynamic loader,...) allocated something there.
// We block this so we don't try this page again in the future,
// saving a bunch of syscalls.
try patcher.address_allocator.block(
patcher.gpa,
.{ .start = @intCast(page_addr), .end = @intCast(page_addr + page_size) },
page_size,
);
// PERF: In theory we could set a flag and do the continue outside
// of this inner loop. This would make this a bit faster, since
// notice a bunch of pages being allocated, instead of just one by
// one. But in practice the Flicken only rarely cross page
// bounderies.
continue :pii;
},
else => {
log.err("{}", .{err});
@panic("TODO: error handling for mmap.");
},
};
assert(@as(u64, @intFromPtr(addr.ptr)) == page_addr);
// `gop.value_ptr.* = {};` not needed because it's void.
}
try pages_made_writable.put(arena, page_addr, {});
}
// Now the patching for the patch request can't fail anymore.
const flicken_addr: [*]u8 = @ptrFromInt(allocated_range.getStart(u64));
const flicken_slice = flicken_addr[0..flicken.size()];
const jump_to_offset: i32 = blk: {
const from: i64 = @intCast(@intFromPtr(&request.bytes[
pii.num_prefixes + jump_rel32_size
]));
const to = allocated_range.start;
break :blk @intCast(to - from);
};
const jump_back_offset: i32 = blk: {
const from = allocated_range.end;
const to: i64 = @intCast(@intFromPtr(&request.bytes[request.size]));
break :blk @intCast(to - from);
};
// The jumps have to be in the opposite direction.
assert(math.sign(jump_to_offset) * math.sign(jump_back_offset) < 0);
// Write to the trampoline first, because for the `nop` flicken `flicken.bytes`
// points to `request.bytes` which we overwrite in the next step.
@memcpy(flicken_addr, flicken.bytes);
flicken_slice[flicken.bytes.len] = jump_rel32;
const jump_back_location = flicken_slice[flicken.bytes.len + 1 ..][0..4];
mem.writeInt(i32, jump_back_location, jump_back_offset, .little);
@memcpy(request.bytes[0..pii.num_prefixes], prefixes[0..pii.num_prefixes]);
request.bytes[pii.num_prefixes] = jump_rel32;
mem.writeInt(
i32,
request.bytes[pii.num_prefixes + 1 ..][0..4],
jump_to_offset,
.little,
);
// Pad remaining with int3.
const patch_end_index = pii.num_prefixes + jump_rel32_size;
if (patch_end_index < request.size) {
@memset(request.bytes[patch_end_index..request.size], int3);
}
break;
}
}
// Change pages back to R|X.
var iter = pages_made_writable.keyIterator();
const protection = posix.PROT.READ | posix.PROT.EXEC;
while (iter.next()) |page_addr| {
const ptr: [*]align(page_size) u8 = @ptrFromInt(page_addr.*);
try posix.mprotect(ptr[0..page_size], protection);
}
log.info("patchRegion: Finished applying patches", .{});
}
// TODO: statistics
}
/// Only used for debugging.
fn printMaps() !void {
const path = "/proc/self/maps";
var reader = try std.fs.cwd().openFile(path, .{});
var buffer: [1024 * 1024]u8 = undefined;
const size = try reader.readAll(&buffer);
std.debug.print("\n{s}\n", .{buffer[0..size]});
}
/// Returns a tuple of the aligned addresses of the start and end pages the given range touches.
fn pageRange(range: Range) struct { u64, u64 } {
const start_page = mem.alignBackward(u64, range.getStart(u64), page_size);
const end_page = mem.alignForward(u64, range.getEnd(u64), page_size);
assert(end_page != start_page);
assert(end_page > start_page);
return .{ start_page, end_page };
}
const PatchInstructionIterator = struct {
bytes: []const u8, // first byte is first byte of instruction to patch.
instruction_size: u8,
flicken_size: u64,
// Internal state
num_prefixes: u8,
pli: PatchLocationIterator,
valid_range: Range,
fn init(
bytes: []const u8,
instruction_size: u8,
flicken_size: u64,
) PatchInstructionIterator {
const patch_bytes = getPatchBytes(bytes, instruction_size, 0);
var pli = PatchLocationIterator.init(patch_bytes, @intFromPtr(&bytes[5]));
const valid_range = pli.next() orelse Range{ .start = 0, .end = 0 };
return .{
.bytes = bytes,
.instruction_size = instruction_size,
.flicken_size = flicken_size,
.num_prefixes = 0,
.pli = pli,
.valid_range = valid_range,
};
}
fn next(
pii: *PatchInstructionIterator,
gpa: mem.Allocator,
address_allocator: *AddressAllocator,
) !?Range {
// TODO: This is basically a state machine here, so maybe use labeled switch instead for
// clarity.
while (true) {
if (try address_allocator.allocate(
gpa,
pii.flicken_size,
pii.valid_range,
)) |allocated_range| {
assert(allocated_range.size() == pii.flicken_size);
return allocated_range;
}
// Valid range is used up, so get a new one from the pli.
if (pii.pli.next()) |valid_range| {
pii.valid_range = valid_range;
continue;
}
// PLI is used up, so increase the number of prefixes.
if (pii.num_prefixes < @min(pii.instruction_size, prefixes.len)) {
pii.num_prefixes += 1;
const patch_bytes = getPatchBytes(pii.bytes, pii.instruction_size, pii.num_prefixes);
pii.pli = PatchLocationIterator.init(
patch_bytes,
@intFromPtr(&pii.bytes[pii.num_prefixes + 5]),
);
if (pii.pli.next()) |valid_range| {
pii.valid_range = valid_range;
continue;
}
// If the new pli is empty immediately, we loop again to try the next prefix count.
continue;
}
// We've used up the iterator at this point.
return null;
}
comptime unreachable;
}
fn getPatchBytes(instruction_bytes: []const u8, instruction_size: u8, num_prefixes: u8) [4]PatchByte {
const offset_location = instruction_bytes[num_prefixes + 1 ..][0..4]; // +1 for e9
var patch_bytes: [4]PatchByte = undefined;
for (&patch_bytes, offset_location, num_prefixes + 1..) |*patch_byte, offset_byte, i| {
if (i < instruction_size) {
patch_byte.* = .free;
} else {
patch_byte.* = .{ .used = offset_byte };
}
}
return patch_bytes;
}
};