applyPatch extracted

This commit is contained in:
2025-11-28 14:00:17 +01:00
parent eaf2695dcd
commit 0f366c490e

View File

@@ -267,58 +267,9 @@ pub fn patchRegion(patcher: *Patcher, region: []align(page_size) u8) !void {
}, },
}; };
// Now the patching for the patch request can't fail anymore. applyPatch(request, flicken, allocated_range, pii.num_prefixes);
const flicken_addr: [*]u8 = @ptrFromInt(allocated_range.getStart(u64));
const flicken_slice = flicken_addr[0..flicken.size()];
const jump_to_offset: i32 = blk: {
const from: i64 = @intCast(@intFromPtr(&request.bytes[
pii.num_prefixes + jump_rel32_size
]));
const to = allocated_range.start;
break :blk @intCast(to - from);
};
const jump_back_offset: i32 = blk: {
const from = allocated_range.end;
const to: i64 = @intCast(@intFromPtr(&request.bytes[request.size]));
break :blk @intCast(to - from);
};
// The jumps have to be in the opposite direction.
assert(math.sign(jump_to_offset) * math.sign(jump_back_offset) < 0);
// Write to the trampoline first, because for the `nop` flicken `flicken.bytes`
// points to `request.bytes` which we overwrite in the next step.
@memcpy(flicken_addr, flicken.bytes);
if (request.flicken == .nop) {
const instr_bytes = request.bytes[0..request.size];
if (disassembler.disassembleInstruction(instr_bytes)) |bundled_instr| {
try relocateInstruction(
bundled_instr,
@intCast(allocated_range.start),
flicken_slice[0..request.size],
); );
} else {
log.err("patchRegion: Failed to disassemble instruction for relocation at 0x{x}", .{request.offset});
return error.DisassemblyFailed;
}
}
flicken_slice[flicken.bytes.len] = jump_rel32;
const jump_back_location = flicken_slice[flicken.bytes.len + 1 ..][0..4];
mem.writeInt(i32, jump_back_location, jump_back_offset, .little);
@memcpy(request.bytes[0..pii.num_prefixes], prefixes[0..pii.num_prefixes]);
request.bytes[pii.num_prefixes] = jump_rel32;
mem.writeInt(
i32,
request.bytes[pii.num_prefixes + 1 ..][0..4],
jump_to_offset,
.little,
);
// Pad remaining with int3.
const patch_end_index = pii.num_prefixes + jump_rel32_size;
if (patch_end_index < request.size) {
@memset(request.bytes[patch_end_index..request.size], int3);
}
if (request.size >= 5) { if (request.size >= 5) {
assert(pii.num_prefixes == 0); assert(pii.num_prefixes == 0);
@@ -346,6 +297,59 @@ pub fn patchRegion(patcher: *Patcher, region: []align(page_size) u8) !void {
} }
} }
fn applyPatch(
request: PatchRequest,
flicken: Flicken,
allocated_range: Range,
num_prefixes: u8,
) void {
const flicken_addr: [*]u8 = @ptrFromInt(allocated_range.getStart(u64));
const flicken_slice = flicken_addr[0..flicken.size()];
const jump_to_offset: i32 = blk: {
const from: i64 = @intCast(@intFromPtr(&request.bytes[
num_prefixes + jump_rel32_size
]));
const to = allocated_range.start;
break :blk @intCast(to - from);
};
const jump_back_offset: i32 = blk: {
const from = allocated_range.end;
const to: i64 = @intCast(@intFromPtr(&request.bytes[request.size]));
break :blk @intCast(to - from);
};
// The jumps have to be in the opposite direction.
assert(math.sign(jump_to_offset) * math.sign(jump_back_offset) < 0);
// Write to the trampoline first, because for the `nop` flicken `flicken.bytes` points to
// `request.bytes` which we overwrite in the next step.
@memcpy(flicken_addr, flicken.bytes);
if (request.flicken == .nop) {
const instr_bytes = request.bytes[0..request.size];
const instr = disassembler.disassembleInstruction(instr_bytes);
relocateInstruction(
instr.?,
@intCast(allocated_range.start),
flicken_slice[0..request.size],
);
}
flicken_slice[flicken.bytes.len] = jump_rel32;
const jump_back_location = flicken_slice[flicken.bytes.len + 1 ..][0..4];
mem.writeInt(i32, jump_back_location, jump_back_offset, .little);
@memcpy(request.bytes[0..num_prefixes], prefixes[0..num_prefixes]);
request.bytes[num_prefixes] = jump_rel32;
mem.writeInt(
i32,
request.bytes[num_prefixes + 1 ..][0..4],
jump_to_offset,
.little,
);
// Pad remaining with int3.
const patch_end_index = num_prefixes + jump_rel32_size;
if (patch_end_index < request.size) {
@memset(request.bytes[patch_end_index..request.size], int3);
}
} }
/// Only used for debugging. /// Only used for debugging.
@@ -507,9 +511,9 @@ const PatchInstructionIterator = struct {
/// Fixes RIP-relative operands in an instruction that has been moved to a new address. /// Fixes RIP-relative operands in an instruction that has been moved to a new address.
fn relocateInstruction( fn relocateInstruction(
instruction: disassembler.BundledInstruction, instruction: disassembler.BundledInstruction,
trampoline_addr: u64, address: u64,
buffer: []u8, buffer: []u8,
) !void { ) void {
const instr = instruction.instruction; const instr = instruction.instruction;
// Iterate all operands // Iterate all operands
var i: u8 = 0; var i: u8 = 0;
@@ -520,39 +524,37 @@ fn relocateInstruction(
// Check for RIP-relative memory operand // Check for RIP-relative memory operand
const is_rip_rel = operand.type == zydis.ZYDIS_OPERAND_TYPE_MEMORY and const is_rip_rel = operand.type == zydis.ZYDIS_OPERAND_TYPE_MEMORY and
operand.unnamed_0.mem.base == zydis.ZYDIS_REGISTER_RIP; operand.unnamed_0.mem.base == zydis.ZYDIS_REGISTER_RIP;
// Check for relative immediate (e.g. JMP rel32) // Check for relative immediate (e.g. JMP rel32)
const is_rel_imm = operand.type == zydis.ZYDIS_OPERAND_TYPE_IMMEDIATE and const is_rel_imm = operand.type == zydis.ZYDIS_OPERAND_TYPE_IMMEDIATE and
operand.unnamed_0.imm.is_relative == zydis.ZYAN_TRUE; operand.unnamed_0.imm.is_relative == zydis.ZYAN_TRUE;
if (!is_rip_rel and !is_rel_imm) return;
if (is_rip_rel or is_rel_imm) { // We have to apply a relocation
const status = zydis.ZydisCalcAbsoluteAddress( const status = zydis.ZydisCalcAbsoluteAddress(
instr, instr,
operand, operand,
instruction.address, instruction.address,
&result_address, &result_address,
); );
if (!zydis.ZYAN_SUCCESS(status)) { assert(zydis.ZYAN_SUCCESS(status));
return error.RelocationFailed;
}
const next_rip = trampoline_addr + instr.length; const new_disp: i32 = blk: {
// new_disp = target - next_rip const next_rip: i64 = @intCast(address + instr.length);
const new_disp_i64: i64 = @as(i64, @intCast(result_address)) - @as(i64, @intCast(next_rip)); const new_disp = @as(i64, @intCast(result_address)) - next_rip;
if (new_disp > math.maxInt(i32) or new_disp < math.minInt(i32)) {
// Check if it fits in i32
if (new_disp_i64 > math.maxInt(i32) or new_disp_i64 < math.minInt(i32)) {
// TODO: Handle relocation overflow (e.g. by expanding instruction or failing gracefully) // TODO: Handle relocation overflow (e.g. by expanding instruction or failing gracefully)
return error.RelocationOverflow; @panic("RelocationOverflow while relocating instruction");
} }
const new_disp: i32 = @intCast(new_disp_i64); break :blk @intCast(new_disp);
};
var offset: u16 = 0; var offset: u16 = 0;
if (is_rip_rel) { if (is_rip_rel) {
// For RIP-relative, the displacement is stored in raw.disp
offset = instr.raw.disp.offset; offset = instr.raw.disp.offset;
} else { } else {
// For relative immediate, find the matching raw immediate assert(is_rel_imm);
// For relative immediate, find the matching raw immediate. This loop works because
// x86-64 instructions can have at most one *relative* immediate (branch target).
var found = false; var found = false;
for (&instr.raw.imm) |*imm| { for (&instr.raw.imm) |*imm| {
if (imm.is_relative == zydis.ZYAN_TRUE) { if (imm.is_relative == zydis.ZYAN_TRUE) {
@@ -561,14 +563,11 @@ fn relocateInstruction(
break; break;
} }
} }
if (!found) return error.RelocationFailed; assert(found);
}
if (offset == 0 or offset + 4 > buffer.len) {
return error.RelocationFailed;
} }
assert(offset != 0);
assert(offset + 4 <= buffer.len);
mem.writeInt(i32, buffer[offset..][0..4], new_disp, .little); mem.writeInt(i32, buffer[offset..][0..4], new_disp, .little);
} }
} }
}